Elliptic Partial Differential Equations (Instead of PDE II) Semester WiSe 2023 / 24
Lecturer Richard Höfer
Type of course (Veranstaltungsart) Vorlesung
German title Elliptische Partielle Differentialgleichungen (anstelle von PDG II)
Contents In dieser Vorlesung wird das Studium elliptischer partieller Differentialgleichungen zweiter Ordnung aus der Vorlesung "Partielle Differentialgleichungen I" vertieft. Die Inhalte sind disjunkt von den Inhalten der Vorlesung "Partielle Differentialgleichungen II" der vergangenen Jahre.
Folgende Inhalte sind geplant:
- Schauder und L^p-Regularitätstheory für lineare Gleichungen über Campanato Räume.
- Harnack Ungleichung und DeGiorgi-Nash-Moser Theorem
- Meyers Abschätzung
- Lösungsmethoden und Regularität für nichtlineare Gleischungen z.B. durch Kompaktheit und variationelle Methoden
English:
We continue the study of elliptic partial differential equations from the lecture series "Partial Differential Equation I". The content is disjoint from the content of the lecture series "Partial Differential Equation I" of previous years. The following content is planned:
- Schauder and L^p estimates for linear equations by the Campanato approach
- Harnack inequality and DeGiorgi-Nash-Moser Theorem
- Meyers' estimate
- Existence and regularity for some nonlinear elliptic equations e.g. by compactness and variational methods
Literature Evans, L.C., Partial Differential Equations, American Mathematical Society.
Gilbarg, D., Trudigern, N.S., Elliptic Partial Differential Equations of Second Order, Springer Verlag.
Giaquinta, M. Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems
Recommended previous knowledge Es werden Kenntnisse der Inhalte der Vorlesungen Analysis I-III, Lineare Algebra I-II sowie Partielle Differentialgleichungen I vorausgesetzt. Grundkenntnisse in Funktionalanalysis werden benötigt, insbesondere über schwache Konvergenz und reflexive Banachräume.
English:
Knowledge of calculus in several variables, Lebesgue integration theory, linear algebra, ordinary differential equations. Moreover, basic knowledge in (linear) functional analysis is needed. (In particular results on weak convergence and reflexive Banach spaces.)
Time/Date Lecture: Tuesday 10-12 and Wednesday 10-12, Exercise Group: Wednesday 8-10.
Location Lecture: M104, Exercise Group: M102
Course homepage https://elearning.uni-regensburg.de/course/view.php?id=62576 (Disclaimer: Dieser Link wurde automatisch erzeugt und ist evtl. extern)
Registration- Registration for the exercise classes: During the first weak of the lecture time via GRIPS
- Registration for course work/examination/ECTS: FlexNow
Course work (Studienleistungen)- Successful participation in the exercise classes: 50% of the maximal points in the
exercise
sheets, satisfactory presentation of one solution Examination (Prüfungsleistungen)- Oral exam: Duration: 30 minutes, Date: individual, by appointment, re-exam: Date: individual,
by appointment Modules BV, MV, MAngAn, PHY-B-WE3, PHY-M-VE3, CS-B-Math4, CS-M-P1, CS-M-P2, CS-M-P3
ECTS 9 ECTS
|