Algebraic Topology II Semester SoSe 2024
Lecturer Marc Hoyois
Type of course (Veranstaltungsart) Vorlesung
German title Algebraische Topologie II
Contents This course is an introduction to the homotopy theory of topological spaces. We will study in particular higher homotopy groups of topological spaces, establishing the foundational theorems of Whitehead, Hurewicz and Blakers-Massey. We will also study classifying spaces via Brown's representability theorem, and introduce spectral sequences via the key example of the Serre spectral sequence of a fibration.
Literature T. tom Dieck, Algebraic Topology.
H. Miller, Lectures on Algebraic Topology (https://math.mit.edu/~hrm/papers/lectures-905-906.pdf)
Recommended previous knowledge The fundamental group and singular homology.
Time/Date Tue/Thu 10-12
Location M104
Additional question session Time/Date: Fri 12-14 Location: M101
Course homepage https://hoyois.app.uni-regensburg.de/SS24/algtop2/index.html (Disclaimer: Dieser Link wurde automatisch erzeugt und ist evtl. extern)
Registration- Registration for course work/examination/ECTS: FlexNow
Course work (Studienleistungen)- Successful participation in the exercise classes: 50% of points in the exercises
Examination (Prüfungsleistungen)- Oral exam: Duration: 25 minutes, Date: by appointment, re-exam: Date: by appointment
Modules BV, MV, MArGeo, MGAGeo
ECTS 9
|
|