Universität Regensburg   IMPRESSUM    DATENSCHUTZ
Fakultät für Mathematik Universität Regensburg
Die folgenden Informationen sind noch nicht freigegeben und deshalb unverbindlich:

Statistical Machine Learning
Semester
WiSe 2025 / 26

Lecturer
Merle Behr

Type of course (Veranstaltungsart)
Vorlesung

German title
Statistisches Maschinelles Lernen

Contents
This course covers the mathematical and statistical foundations of machine learning (ML). Various
approaches and associated analysis tools for the theoretical investigation of ML methods are
covered. Possible topics include the theoretical and statistical investigation of nearest-neighbor
methods, decision tree-based methods, penalized linear regression, kernel methods,
ensemble methods and neural networks. Further possible topics are causal inference and conformal
prediction. An introduction to empirical process theory is also provided for the theoretical
analysis of these methods.

Literature
The course will be based on various material, including journal articles. Some basic references
are "The Elements of Statistical Learning" by Trevor Hastie, Robert Tibshirani, and
Jerome Friedman, Springer, 2009; "A Probabilistic Theory of Pattern Recognition" by Luc
Devroye , László Györfi , Gábor Lugosi, Springer, 2013

Recommended previous knowledge
Linear algebra, analysis, and probability theory.

Time/Date
Thursdays 12:15 - 14:00 (lecture) and Fridays 10:15 - 12:00 (tutorial)

Location
BA.621 (Bajuwarenstraße 4, FIDS)

Course homepage
https://elearning.uni-regensburg.de/course/view.php?id=71905
(Disclaimer: Dieser Link wurde automatisch erzeugt und ist evtl. extern)

Registration
  • Please register for the class via SPUR and joint via GRIPS
  • Registration for course work/examination/ECTS: FlexNow
Course work (Studienleistungen)
  • Up to 10 % bonus points are awarded in the module examination (written or oral exam) for
    successfully solving the voluntary exercises in the tutorial.
Examination (Prüfungsleistungen)
  • Written or oral exam towards the end of the lecture period or during the lecture-free period
Modules
MV

ECTS
6
Druckansicht