Universität Regensburg   IMPRESSUM    DATENSCHUTZ
Fakultät für Mathematik Universität Regensburg
Die folgenden Informationen sind noch nicht freigegeben und deshalb unverbindlich:

Stochastic Analysis
Semester
SoSe 2026

Lecturer
Richard Höfer

Type of course (Veranstaltungsart)
Vorlesung

German title
Stochastische Analysis

Contents
We develop the theory of stochastic integration and stochastic differential equations, which play a fundamental role in many aspects of natural sciences, computer science and finance. After a systematic study of continuous time martingales we introduce Itô calculus to integrate against a stochastic processes such as Brownian Motion. Since Brownian Motion has unbounded total variation, this requires a generalization of the Lebesgue integral and the Stieltjes integral. We will cover the Itô Formula, quadratic variation, Levy's characterization of Brownian Motion, Stratonovitch integrals, Girsanov transform, Black Scholes formula, Feynman-Kac formula and stochastic representation of solutions to PDEs.

Literature
Klenke: Wahrscheinlichkeitstheorie.
Le Gall: Brownian Motion, Martingales, and Stochastic Calculus.
Rogers and Williamns: Diffusion, Markov Processes, and Martingales.
Kuo: Introduction to Stochastic Integration.
Protter: Stochastic Integration and Differential Equations.

Recommended previous knowledge
Lineare Algebra, Analysis, Introduction to probability theory. Knowledge in Functionalanalysis, partial differential equations or optimization is helpful but not required

Time/Date
Tue 10-12, Thu 12-14; Exercise: Mon 14-16

Location
Tue: M 102, Thu: M 104; Exercise M102

Course homepage
https://elearning.uni-regensburg.de/course/view.php?id=980717
(Disclaimer: Dieser Link wurde automatisch erzeugt und ist evtl. extern)

Registration
  • Registration for course work/examination/ECTS: FlexNow
Course work (Studienleistungen)
  • Successful participation in the exercise classes: 50% of the exercises
Examination (Prüfungsleistungen)
  • Oral exam: Duration: 30 minutes, Date: by arrangement , re-exam: Date: by arrangement
Modules
BV, MV, MAngAn

ECTS
9
Druckansicht