Die folgenden Informationen sind noch nicht freigegeben und deshalb unverbindlich:
Stochastic Analysis Semester SoSe 2026
Lecturer Richard Höfer
Type of course (Veranstaltungsart) Vorlesung
German title Stochastische Analysis
Contents We develop the theory of stochastic integration and stochastic differential equations, which play a fundamental role in many aspects of natural sciences, computer science and finance.
After a systematic study of continuous time martingales we introduce Itô calculus to integrate against a stochastic processes such as Brownian Motion. Since Brownian Motion has unbounded total variation, this requires a generalization of the Lebesgue integral and the Stieltjes integral. We will cover the Itô Formula, quadratic variation, Levy's characterization of Brownian Motion, Stratonovitch integrals, Girsanov transform, Black Scholes formula, Feynman-Kac formula and stochastic representation of solutions to PDEs.
Literature Klenke: Wahrscheinlichkeitstheorie.
Le Gall: Brownian Motion, Martingales, and Stochastic Calculus.
Rogers and Williamns: Diffusion, Markov Processes, and Martingales.
Kuo: Introduction to Stochastic Integration.
Protter: Stochastic Integration
and Differential
Equations.
Recommended previous knowledge Lineare Algebra, Analysis, Introduction to probability theory.
Knowledge in Functionalanalysis, partial differential equations or optimization is helpful but not required
Time/Date Tue 10-12, Thu 12-14; Exercise: Mon 14-16
Location Tue: M 102, Thu: M 104; Exercise M102
Course homepage https://elearning.uni-regensburg.de/course/view.php?id=980717 (Disclaimer: Dieser Link wurde automatisch erzeugt und ist evtl. extern)
Registration- Registration for course work/examination/ECTS: FlexNow
Course work (Studienleistungen)- Successful participation in the exercise classes: 50% of the exercises
Examination (Prüfungsleistungen)- Oral exam: Duration: 30 minutes, Date: by arrangement , re-exam: Date: by arrangement
Modules BV, MV, MAngAn
ECTS 9
|
|