Universität Regensburg   IMPRESSUM    DATENSCHUTZ
Fakultät für Mathematik Universität Regensburg
Infinity Categories for the Working Mathematician
Semester
WiSe 2018 / 19

Lecturer
Daniel Schäppi

Type of course (Veranstaltungsart)
Seminar

Contents
Many of the basic notions of category theory (limits, colimits, adjunctions, Kan extensions, etc.)
generalize to the context of higher categories. Moreover, experience shows that these notions behave
in the expected manner: a result about categories with a sufficiently "structural" proof
can be generalized to the context of higher categories. Emily Riehl and Dominic Verity have found
a way to develop the basic theory of higher categories in a model-independent way. The novelty of
this approach is that it also applies to models of (Infinity,n)-categories for n>1. Using this
new approach, it is possible to turn the above mentioned intuition into a theorem. In this seminar,
we will follow the draft of the book "Infinity Categories for the Working Mathematician"
by Riehl and Verity to learn this new approach to higher category theory. Previous attendance of the
seminar is therefore NOT required.

Literature
Infinity Categories for the Working Mathematician (draft)

Recommended previous knowledge
Basic category theory, simplicial homotopy theory

Time/Date
Tuesday 16.00-18.00

Location
M101

Registration
  • Registration for course work/examination/ECTS: FlexNow
Course work (Studienleistungen)
  • Presentation: Giving a seminar talk of roughly 90 minutes
Examination (Prüfungsleistungen)
  • Detailed written report of the seminar talk
Regelungen bei Studienbeginn vor WS 2015 / 16
  • Benotet:
    • O. g. Studienleistung und o. g. Prüfungsleistung; die Note ergibt sich aus dem Seminarvortrag
  • Unbenotet:
    • O. g. Studienleistung
Additional comments
There will be preparatory meetings one week in advance of the talks (Repetitorium)

Modules
MV, MSem

ECTS
Siehe Modulkatalog. MV und Nebenfach: 4,5 LP bei Studienbeginn ab WS 15/16, 6 LP bei Studienbeginn
vor WS 15/16
Druckansicht