Universität Regensburg   IMPRESSUM    DATENSCHUTZ
Fakultät für Mathematik Universität Regensburg

Hinweis Bitte informieren Sie sich auf den jeweiligen GRIPS-Seiten über den digitalen Ablauf der Lehrveranstaltungen.

English Note For our digital courses all relevant information can be found on the appropriate GRIPS sites.

A1-invariance in algebraic geometry
Semester
SoSe 2020

Lecturer
Marc Hoyois

Type of course (Veranstaltungsart)
Seminar

Contents

An A^1-homotopy is an algebraic analogue of a homotopy in topology, where the unit interval [0,1] is replaced by the algebraic affine line A^1. As in topology, it turns out that many interesting invariants of algebraic varieties are A^1-invariant, i.e., they do not see the difference between A^1-homotopic maps. An important example is étale cohomology, which is an algebro-geometric analogue of singular cohomology.

The goal of this seminar is to learn the necessary background and study some elementary A^1-homotopical phenomena in algebraic geometry. In particular, we will discuss algebraic vector bundles and symmetric bilinear forms. The main results we will obtain are the following:

1) The A^1-homotopical classification of vector bundles: if X is a smooth affine variety, there is a bijection between isomorphism classes of vector bundles on X and A^1-homotopy classes of maps to the Grassmannian.

2) There is a bijection between the set of pointed A^1-homotopy classes of endomorphisms of the projective line and equivalence classes of non-degenerate symmetric bilinear forms.



Literature
See the detailed program on the course homepage.

Recommended previous knowledge
Category theory and basic commutative algebra (rings, modules, tensor products).

Time/Date
Mi 14-16

Location
M 102

Course homepage
http://www.mathematik.ur.de/hoyois/SS20/A1homotopy.html
(Disclaimer: Dieser Link wurde automatisch erzeugt und ist evtl. extern)

Registration
  • Organisational meeting/distribution of topics: February 6 at 14:00 in M101 or contact me by
    email.
  • Registration for course work/examination/ECTS: FlexNow
Course work (Studienleistungen)
  • Presentation: Giving a seminar talk of roughly 90 minutes
Examination (Prüfungsleistungen)
  • Detailed written report of the seminar talk
Modules
BSem, MV, MSem

ECTS
Siehe Modulkatalog. MV und Nebenfach: 4,5 LP bei Studienbeginn ab WS 15/16, 6 LP bei Studienbeginn
vor WS 15/16
Druckansicht