Hinweis Bitte informieren Sie sich auf den jeweiligen GRIPS-Seiten über den digitalen Ablauf der Lehrveranstaltungen.
Note For our digital courses all relevant information can be found on the appropriate GRIPS sites.
The Weil Conjectures Semester SoSe 2020
Lecturer Han-Ung Kufner
Type of course (Veranstaltungsart) Seminar
Contents The Weil conjectures on zeta functions of varieties over finite fields have many important applications in arithmetic geometry. The most difficult part, which is an analogue of the Riemann Hypothesis, was first proven by Pierre Deligne in 1974. In 1980 Deligne (Weil II) established the theory of weights in l-adic cohomology and proved an even more general result. This proof was later simplified by Laumon.
The aim of the seminar is to understand the proof of the Weil conjectures following the ideas of Deligne's Weil II and the work of Laumon.
Literature R. Kiehl, R. Weissauer: "Weil Conjectures, Perverse Sheaves and l-adic Fourier Transform"
P. Deligne: "La conjecture de Weil II"
G. Laumon: "Transformation de Fourier, constantes d'équations fonctionnelles et conjecture de Weil"
Recommended previous knowledge Étale Cohomology
Time/Date Wed 16-18
Location M009
Registration- Organisational meeting/distribution of topics: Wednesday 05.02, M103, 12:30 - 14:00 or email to
han-ung.kufner"at"mathematik.uni-regensburg.de - Registration for course work/examination/ECTS: FlexNow
Course work (Studienleistungen)- Presentation: Giving a seminar talk of roughly 90 minutes
Examination (Prüfungsleistungen)- Detailed written report of the seminar talk
Regelungen bei Studienbeginn vor WS 2015 / 16- Benotet:
- O. g. Studienleistung und o. g. Prüfungsleistung; die Note ergibt sich aus dem Seminarvortrag
- Unbenotet:
Modules BSem, MV, MSem
ECTS Siehe Modulkatalog. MV und Nebenfach: 4,5 LP bei Studienbeginn ab WS 15/16, 6 LP bei Studienbeginn vor WS 15/16
|
|