Universität Regensburg   IMPRESSUM    DATENSCHUTZ
Fakultät für Mathematik Universität Regensburg

Hinweis Bitte informieren Sie sich auf den jeweiligen GRIPS-Seiten über den digitalen Ablauf der Lehrveranstaltungen.

English Note For our digital courses all relevant information can be found on the appropriate GRIPS sites.

C*-Algebras and K-Theory
Semester
SoSe 2020

Lecturer
Matthias Ludewig

Type of course (Veranstaltungsart)
Vorlesung

Contents
*-algebras were first considered in quantum mechanics to model algebras of physical observables. In mathematics, they since then became ubiquitous tools in index theory, the theory of representations of locally compact groups and Alain Connes non-commutative geometry, just to name a few. They are also fundamental in coarse geometry, a subject that has been recently found to be relevant in the theory of topological phases, to circle back to physics.
The lecture will start with a basic introduction to the C*-algebras, discussing in particular the result of Gelfand-Naimark that commutative C*-algebras are isomorphic to continuous functions on a locally compact Hausdorff space, while general C*-algebras can be realized as subalgebras of B(H) for some Hilbert space H.
The lecture will continue with an introduction to K-theory, a tool that has revolutionised the study of C*-algebras in the last decades. Roughly speaking, the idea of K-theory is to understand an algebra by studying the category of modules over it. However, for C*-algebras, K-theory has this additional feature of Bott periodicity, which makes the theory particularly well-behaved.

Literature
[B1] B. Blackadar. K-Theory for Operator Algebras.
[B2] B. Blackadar. Operator Algebras.
[RLL] M. Rørdam, F. Larsen, N.J. Laustsen. An Introduction to K-Theory for C*-Algebras.
[WE] N.E. Wegge-Olsen. K-Theory and C*-Algebras. A Friendly Approach.

Recommended previous knowledge
Analysis I-IV; Lineare Algebra I+II; Algebra; if Functional Analysis is not known, please ask Matthias Ludewig or Bernd Ammann for suitable literature

Time/Date
Mo 8-10 and 1h/week Exercises (Time?) First Lecture: Mo 20th April

Location
M123 or online

Registration
  • Please register for the course in G.R.I.P.S.
  • Registration for course work/examination/ECTS: FlexNow
Course work (Studienleistungen)
  • Passing the examination below
Examination (Prüfungsleistungen)
  • Oral exam: Duration: 30 minutes, Date: by arrangement, re-exam: Date:
Regelungen bei Studienbeginn vor WS 2015 / 16
  • Benotet:
    • O. g. Studienleistung und o. g. Prüfungsleistung; die Note ergibt sich aus der Prüfungsleistung
  • Unbenotet:
    • O. g. Studienleistung und Bestehen der o. g. Prüfungsleistung
Modules
BV, MV, MGAGeo

ECTS
4,5
Druckansicht