Universität Regensburg   IMPRESSUM   DATENSCHUTZ
Fakultät für Mathematik Universität Regensburg
p-adic Numbers, p-adic Analysis, and Zeta-Functions
Semester
WiSe 2017 / 18

Dozent
Klaus Kuennemann

Veranstaltungsart
Seminar

Inhalt
Let p be a prime number. We start with the introduction of the field Q_p of p-adic numbers.
Afterwards we discuss p-adic interpolation of the Riemann zeta-function and construct a
non-archimedean analog of the field of complex numbers. Using p-adic power series we introduce
logarithm, gamma, and exponential functions. As a highlight we show the rationality of the
zeta-function of a set of equations over finite field. This rationality is part of the famous Weil
conjectures and was first shown by Dwork in 1960.

Literaturangaben
Neal Koblitz, p-adic Numbers, p-adic Analysis, and Zeta-Functions, Springer 1984

Empfohlene Vorkenntnisse
Algebra and some complex analysis, talks in the second half might also require more commutative
algebra and some algebraic number theory

Termin
Tue 16h00 -17h30

Anmeldung
  • Vorbesprechung/Themenvergabe: Organisational meeting/distribution of topics: Thursday July 27th
    2017 at 12h00h in room M201 or contact my assistant Martino Stoffel or me by email
  • Anmeldung zu Studienleistungen/Prüfungsleistungen: FlexNow
Studienleistungen
  • Presentation: Giving a seminar talk of roughly 90 minutes
Prüfungsleistungen
  • Detailed written report of the seminar talk
Regelungen bei Studienbeginn vor WS 2015 / 16
  • Benotet:
    • O. g. Studienleistung und o. g. Prüfungsleistung; die Note ergibt sich aus der Prüfungsleistung
  • Unbenotet:
    • O. g. Studienleistung
Module
BSem, MV, MSem, LA-GySem

ECTS
Siehe Modulkatalog. MV und Nebenfach: 4,5 LP bei Studienbeginn ab WS 15/16, 6 LP bei Studienbeginn
vor WS 15/16