The Grothendieck-Riemann-Roch theorem Semester SoSe 2018
Lecturer Adeel Khan
Type of course (Veranstaltungsart) Vorlesung
Contents This lecture course will be centred around the celebrated Grothendieck-Riemann-Roch theorem, proven by A. Grothendieck in 1957. Along the way, we will explain how it can be naturally generalized to the setting of derived algebraic geometry. Finally, we will also discuss how the derived Grothendieck-Riemann-Roch formula gives rise to formulas for the virtual fundamental class originally predicted by M. Kontsevich.
Literature P. Berthelot, A. Grothendieck, L. Illusie, Théorie des intersections et théorème de Riemann-Roch (SGA 6).
W. Fulton, Intersection theory.
J. Lurie, Spectral algebraic geometry.
Recommended previous knowledge Algebraic geometry.
Time/Date Thursday 16-18
Location M311
Course homepage https://www.preschema.com/teaching/grr-ss18/ (Disclaimer: Dieser Link wurde automatisch erzeugt und ist evtl. extern)
Registration- Registration for course work/examination/ECTS: FlexNow
Examination (Prüfungsleistungen)- Oral exam: Duration: 30 minutes, Date: individual appointment, re-exam: Date: individual
appointment Additional comments Exercise course: Friday 10-12, H 32
Modules MV, MArGeo
ECTS 3
|