Universität Regensburg   IMPRESSUM   DATENSCHUTZ
Fakultät für Mathematik Universität Regensburg

Hinweis Bitte informieren Sie sich auf den jeweiligen GRIPS-Seiten über den digitalen Ablauf der Lehrveranstaltungen.

English Note For our digital courses all relevant information can be found on the appropriate GRIPS sites.

Cohomology of sheaves I
Semester
WiSe 2020 / 21

Lecturer
Prof. Dr. Guido Kings

Type of course (Veranstaltungsart)
Vorlesung

Contents
This is the first part of a two semester course on the cohomology of sheaves. Sheaves are a basic
tool in mathematics to describe local-global principles and occur everywhere in mathematics. Typical
examples are the continuous functions on a topological space or differentiable forms on a
differentiable manifold. Also vector bundles are the same as locally free sheaves of finite rank. To
work with sheaves it is important to have a good knowledge of the so called six functor formalism
$f_*$, $f^*$, $f_!$, $f^!$, $\otimes$, $Hom$, which works well in the derived category. In view of
this, the course will also contain an introduction to derived categories and hence to spectral
sequences. An important source of examples for sheaves are equivariant sheaves on locally symmetric
spaces, which gives connections to automorphic forms and number theory. The lecture will be
divided into two parts: Tuesdays we introduce the general theory and Thursdays we will treat
examples. There are no prerequisites besides a good knowledge of the courses Analysis and Algebra of
the first four semesters. We plan to treat: Categories, Functors, abelian categories, limits
and colimits, sheaves, R-module sheaves, the functors $f_*$, $f^*$, $f_!$, $f^!$, $\otimes$, $Hom$,
equivariant sheaves, categories of complexes, the basic notions of triangulated and derived
categories and the cohomology of sheaves. The lecture in the summer term will continue with
general Poincare-Verdier duality, homotopy invariance of sheaf cohomology, base change, purity,
relation to singular and de Rham cohomology, Thom and Chern classes. Besides this we will introduce
a purely topological construction of equivariant cohomology classes, which can be expressed by
Epstein zeta functions and lead to strong integrality statements for special values of
L-functions.

Time/Date
Tue and Thu 14 - 16

Location
digital

Course homepage
http://www.mathematik.uni-regensburg.de/Mat4/kings/index.html
(Disclaimer: Dieser Link wurde automatisch erzeugt und ist evtl. extern)

Registration
  • Preliminary registration for the organisation of exercise classes: at the end of the previous
    semester via EXA or LSF (see announcement by the department)
  • Registration for the exercise classes: via Grips, during the first week
  • Registration for course work/examination/ECTS: FlexNow
Course work (Studienleistungen)
  • Successful participation in the exercise classes: 50 % of the credits, presentation of a
    solution in class
Examination (Prüfungsleistungen)
  • Oral exam: Duration: 30 minutes, Date: individual, re-exam: Date: individual
Regelungen bei Studienbeginn vor WS 2015 / 16
  • Benotet:
    • O. g. Studienleistung und o. g. Prüfungsleistung; die Note ergibt sich aus der Prüfungsleistung
  • Unbenotet:
    • O. g. Studienleistung
Modules
BV, MV, MArGeo, MGAGeo, LA-GyGeo

ECTS
9