Universität Regensburg   IMPRESSUM   DATENSCHUTZ
Fakultät für Mathematik Universität Regensburg
Introduction to étale cohomology
Semester
WiSe 2022 / 23

Lecturer
Guido Kings

Type of course (Veranstaltungsart)
Vorlesung

German title
Einführung in die étale Kohomology

Contents
Étale cohomology was invented by Grothendieck to attack the Weil conjectures about
L-functions of varieties over finite fields. The most important feature of this theory is that the
cohomology has an action of the Galois group which provides a bridge between geometric and
arithmetic properties of the variety. In this lecture we will define étale cohomology and
explain its most important properties with special emphasis to the relation with Galois cohomology.
It is recommended to participate also in the seminar on arithmetic duality theorems.

Recommended previous knowledge
Knowledge of Algebraic Geometry I und II is required.

Time/Date
Tue 14 - 16

Location
M101

Course homepage
https://www.uni-regensburg.de/mathematik/mathematik-kings/startseite/index.html
(Disclaimer: Dieser Link wurde automatisch erzeugt und ist evtl. extern)

Registration
  • Registration for course work/examination/ECTS: FlexNow
Examination (Prüfungsleistungen)
  • Oral exam: Duration: 30 minutes, Date: individual, re-exam: Date: individual
Modules
MV, MArGeo

ECTS
3